Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Br J Radiol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38574384

RESUMO

OBJECTIVES: Becker muscular dystrophy (BMD) is a relatively less investigated neuromuscular disease, partially overlapping the phenotype of Duchenne dystrophy (DMD). Physiopathological and anatomical patterns are still not comprehensively known, despite recent effort in the search of early biomarkers. METHODS: Aim of this study was to selectively compare normal appearing muscles of BMD with healthy controls. Among a pool of 40 BMD patients and 20 healthy controls, Sartorius and gracilis muscles were selected on the basis of a blinded clinical quantitative/qualitative evaluation, if classified as normal appearing (0 or 1 on Mercuri scale) and subsequently segmented on diffusion tensor MRI scans with a tractographic approach. Diffusion derived parameters were extracted. RESULTS: Non-parametric testing revealed significant differences between normal and normal appearing BMD diffusion derived parameters in both muscles, the difference being more evident in sartorius. Bonferroni-corrected p-values (<0.05) of Mann-Whitney test could discriminate between BMD and controls for standard deviation of all diffusion parameters (mean diffusivity, fractional anisotropy, axial and radial diffusivity) in both sartorius and gracilis, while in sartorius the significant difference was found also in the average values of the same parameters (with exception of RD). CONCLUSIONS: This method proved to be able to identify possible early or subclinical microstructural alterations in BMD muscles. ADVANCES IN KNOWLEDGE: This is to our knowledge the first imaging study to provide evidence of such microstructural alterations in muscles rated as normal in a conventional imaging-based assessment.

2.
Sci Transl Med ; 16(741): eadg2841, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569017

RESUMO

Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.


Assuntos
Doenças Musculares , Sarcômeros , Animais , Humanos , Cálcio/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Sarcômeros/metabolismo , Troponina I/genética , Troponina I/metabolismo , Peixe-Zebra/metabolismo
3.
Front Neurol ; 15: 1340693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500810

RESUMO

Background: Congenital myopathies are a group of heterogeneous inherited disorders, mainly characterized by early-onset hypotonia and muscle weakness. The spectrum of clinical phenotype can be highly variable, going from very mild to severe presentations. The course also varies broadly resulting in a fatal outcome in the most severe cases but can either be benign or lead to an amelioration even in severe presentations. Muscle biopsy analysis is crucial for the identification of pathognomonic morphological features, such as core areas, nemaline bodies or rods, nuclear centralizations and congenital type 1 fibers disproportion. However, multiple abnormalities in the same muscle can be observed, making more complex the myopathological scenario. Case presentation: Here, we describe an Italian newborn presenting with severe hypotonia, respiratory insufficiency, inability to suck and swallow, requiring mechanical ventilation and gastrostomy feeding. Muscle biopsy analyzed by light microscopy showed the presence of vacuoles filled with glycogen, suggesting a metabolic myopathy, but also fuchsinophilic inclusions. Ultrastructural studies confirmed the presence of normally structured glycogen, and the presence of minirods, directing the diagnostic hypothesis toward a nemaline myopathy. An expanded Next Generation Sequencing analysis targeting congenital myopathies genes revealed the presence of a novel heterozygous c.965 T > A p. (Leu322Gln) variant in the ACTA1 gene, which encodes the skeletal muscle alpha-actin. Conclusion: Our case expands the repertoire of molecular and pathological features observed in actinopathies. We highlight the value of ultrastructural examination to investigate the abnormalities detected at the histological level. We also emphasized the use of expanded gene panels in the molecular analysis of neuromuscular patients, especially for those ones presenting multiple bioptic alterations.

4.
Acta Myol ; 42(2-3): 65-70, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090548

RESUMO

Objective: Spinal Muscular Atrophy (SMA) is a genetic neuromuscular disease affecting the lower motor neuron, carrying a significant burden on patients' general motor skills and quality of life, characterized by a great variability in phenotypic expression. As new therapeutic options make their appearance on the scene, sensitive clinical tools and outcome measures are needed, especially in adult patients undergoing treatment, in which the expected clinical response is a mild improvement or stabilization of disease progression. Methods: Here, we describe a new functional motor scale specifically designed for evaluating the endurance dimension for the upper and lower limbs in adult SMA patients. Results: The scale was first tested in eight control healthy subjects and then validated in ten adult SMA patients, proving intra- and inter-observer reliability. We also set up an evaluation protocol by using wearable devices including surface EMG and accelerometer. Conclusions: The endurance evaluation should integrate the standard clinical monitoring in the management and follow-up of SMA adult patients.


Assuntos
Atrofia Muscular Espinal , Qualidade de Vida , Adulto , Humanos , Reprodutibilidade dos Testes , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Fadiga , Protocolos Clínicos
5.
Front Genet ; 14: 1278572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098475

RESUMO

Isolated mitochondrial respiratory chain Complex IV (Cytochrome c Oxidase or COX) deficiency is the second most frequent isolated respiratory chain defect. Causative mutations are mainly identified in structural COX subunits or in proteins involved in the maturation and assembly of the COX holocomplex. We describe an Italian familial case of mitochondrial myopathy due to a variant in the COX assembly factor 8 gene (COA8). Patient 1 is a 52-year-old woman who presented generalized epilepsy and retinitis pigmentosa at 10 years of age. From her early adulthood she complained about cramps and myalgia after exercise, and bilateral hearing loss emerged. Last neurological examination (52 years of age) showed bilateral ptosis, muscle weakness, peripheral neuropathy, mild dysarthria and dysphonia, cognitive impairment. Muscle biopsy had shown the presence of ragged-red fibers. Patient 2 (Patient 1's sister) is a 53-year-old woman presenting fatigability, myalgia, and hearing loss. Neurological examination showed ptosis and muscle weakness. Muscle biopsy displayed a diffuse reduction of COX activity staining and ragged-red fibers. Both sisters presented secondary amenorrhea. After ruling out mtDNA mutations, Whole Exome Sequencing analysis identified the novel homozygous COA8 defect c.170_173dupGACC, p.(Pro59fs) in the probands. Loss-of-function COA8 mutations have been associated with cavitating leukoencephalopathy with COX deficiency in 9 reported individuals. Disease course shows an early-onset rapid clinical deterioration, affecting both cognitive and motor functions over months, followed by stabilization and slow improvement over several years. Our findings expand the clinical spectrum of COA8-related disease. We confirm the benign course of this rare disorder, highlighting its (intrafamilial) clinical variability.

6.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139231

RESUMO

Limb girdle muscular dystrophies (LGMDs) are a group of genetically inherited neuromuscular diseases with a very variable clinical presentation and overlapping traits. Over the last few years there has been an increasing interest in the use of non-invasive circulating biomarkers to monitor disease progression and to evaluate the efficacy of therapeutic approaches. Our aim was to identify the miRNA signature with potential value for LGMD patient screening and stratification. Using miRCURY LNA miRNA qPCR Serum/Plasma Panel, we analyzed 179 miRNAs from 16 patients, divided in four pools based on their genetic diagnosis, and from healthy controls. The miRNAs analysis showed a total of 107 dysregulated miRNAs in LGMD patients when compared to the healthy controls. After filtering via skeletal tissue expression and gene/pathways target analysis, the number of dysregulated miRNAs drastically reduced. Six selected miRNAs-let-7f-5p (in LGMDR1), miR-20a-5p (in LGMDR2), miR-130b-5p, miR-378a-5p (both in LGMDR3), miR-376c-3p and miR-382-5p (both in LGMDR4)-whose expression was significantly lower compared to controls in the different LGMD pools, were further investigated. The bioinformatic analysis of the target genes in each selected miRNA revealed ECM-receptor interaction and TGF-beta signaling as the most involved pathways. The correlation analysis showed a good correlation of let-7f-5p with fibrosis and with the cross sectional area of type I and type II fibers, while miR-130b-5p showed a good correlation with the age of onset of the disease. The receiver operating characteristic curves showed how single miRNAs were able to discriminate a specific group of LGMD patients and how the combination of six miRNAs was able to discriminate LGMD patients from controls.


Assuntos
MicroRNAs , Distrofia Muscular do Cíngulo dos Membros , Humanos , MicroRNAs/genética , Perfilação da Expressão Gênica , Biomarcadores , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Curva ROC
7.
Neurol Sci ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968431

RESUMO

BACKGROUND: Distrophinopathies are a heterogeneous group of neuromuscular disorders due to mutations in the DMD gene. Different isoforms of dystrophin are also expressed in the cerebral cortex and Purkinje cells. Despite cognitive abnormalities in Duchenne muscular dystrophy subjects that have been described in the literature, little is known about a comprehensive cognitive profile in Becker muscular dystrophy patients. AIM: The aim of this study was to assess cognitive functioning in Becker muscular dystrophy patients by using an extensive neuropsychological battery. Our hypothesis is that the most impaired functions are the highly intentional and conscious ones, such as working memory functions, which require a prolonged state of cellular activation. METHODS: We performed an extensive neuropsychological assessment on 28 Becker muscular dystrophy patients from 18 to 65 years old. As control subjects, we selected 20 patients with limb-girdle muscular dystrophy, whose clinical picture was similar except for cognitive integrity. The evaluation, although extended to all areas, was focused on prefrontal control skills, with a distinction between inhibitory processes of selective attention and activating processes of working memory. RESULTS AND CONCLUSIONS: Significant underperformances were found exclusively in the Dual Task and PASAT tests, to demonstrate a selective impairment of working memory that, while not causing intellectual disability, reduces the intellectual potential of patients with Becker muscular dystrophy.

8.
Cell Mol Life Sci ; 80(8): 241, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543540

RESUMO

Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in the SMN1 gene resulting in reduced levels of the SMN protein. Nusinersen, the first antisense oligonucleotide (ASO) approved for SMA treatment, binds to the SMN2 gene, paralogue to SMN1, and mediates the translation of a functional SMN protein. Here, we used longitudinal high-resolution mass spectrometry (MS) to assess both global proteome and metabolome in cerebrospinal fluid (CSF) from ten SMA type 3 patients, with the aim of identifying novel readouts of pharmacodynamic/response to treatment and predictive markers of treatment response. Patients had a median age of 33.5 [29.5; 38.25] years, and 80% of them were ambulant at time of the enrolment, with a median HFMSE score of 37.5 [25.75; 50.75]. Untargeted CSF proteome and metabolome were measured using high-resolution MS (nLC-HRMS) on CSF samples obtained before treatment (T0) and after 2 years of follow-up (T22). A total of 26 proteins were found to be differentially expressed between T0 and T22 upon VSN normalization and LIMMA differential analysis, accounting for paired replica. Notably, key markers of the insulin-growth factor signaling pathway were upregulated after treatment together with selective modulation of key transcription regulators. Using CombiROC multimarker signature analysis, we suggest that detecting a reduction of SEMA6A and an increase of COL1A2 and GRIA4 might reflect therapeutic efficacy of nusinersen. Longitudinal metabolome profiling, analyzed with paired t-Test, showed a significant shift for some aminoacid utilization induced by treatment, whereas other metabolites were largely unchanged. Together, these data suggest perturbation upon nusinersen treatment still sustained after 22 months of follow-up and confirm the utility of CSF multi-omic profiling as pharmacodynamic biomarker for SMA type 3. Nonetheless, validation studies are needed to confirm this evidence in a larger sample size and to further dissect combined markers of response to treatment.


Assuntos
Multiômica , Atrofia Muscular Espinal , Humanos , Estudos Retrospectivos , Seguimentos , Proteoma , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo
9.
Dermatol Pract Concept ; 13(3)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37557111

RESUMO

INTRODUCTION: Androgenic alopecia (AGA) staging is still based on macroscopic scales, yet the introduction of trichoscopy is gradually bringing an important change, even though it remains an eye-based method. However, recently developed artificial intelligence-assisted programs can execute automated count of trichoscopic patterns. Nevertheless, to interpret data elaborated by these programs can be complex. Machine learning algorithms might represent an innovative solution. Among them, support vector machine (SVM) models are among the best methods for classification. OBJECTIVES: Our aim was to develop a SVM algorithm, based on three trichoscopic patterns, able to classify AGA patients and to calculate a severity index. METHODS: We retrospectively analyzed trichoscopic images from 200 AGA patients using Trichoscale Pro® software, calculating the number of vellus hair, empty follicles and single hair follicular units. Then, we elaborated a SVM model, based on these three patterns and on sex, able to classify patients as affected by mild AGA or moderate-severe AGA, and able to calculate the probability of the classification being correct, expressed as percentage (from 50% to 100%). This probability estimate is higher in patients with more AGA trichoscopic patterns and, thus, it might serve as a severity index. RESULTS: For training and test datasets, accuracy was 94.3% and 90.0% respectively, while the Area Under the Curve was 0.99 and 0.95 respectively. CONCLUSIONS: We believe our SVM model could be of great support for dermatologists in the management of AGA, especially in better assessing disease severity and, thus, in prescribing a more appropriate therapy.

10.
Genes (Basel) ; 14(7)2023 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-37510298

RESUMO

Introduction/Aims HyperCKemia is considered a hallmark of neuromuscular diseases. It can be either isolated or associated with cramps, myalgia, weakness, myoglobinuria, or rhabdomyolysis, suggesting a metabolic myopathy. The aim of this work was to investigate possible genetic causes in order to help diagnose patients with recurrent hyperCKemia or clinical suspicion of inherited metabolic myopathy. Methods A cohort of 139 patients (90 adults and 49 children) was analyzed using a custom panel containing 54 genes associated with hyperCKemia. Results A definite genetic diagnosis was obtained in 15.1% of cases, while candidate variants or variants of uncertain significance were found in a further 39.5%. Similar percentages were obtained in patients with infantile or adult onset, with some different causative genes. RYR1 was the gene most frequently identified, either with single or compound heterozygous variants, while ETFDH variants were the most common cause for recessive cases. In one patient, mRNA analysis allowed identifying a large LPIN1 deletion missed by DNA sequencing, leading to a certain diagnosis. Conclusion These data confirm the high genetic heterogeneity of hyperCKemia and metabolic myopathies. The reduced diagnostic yield suggests the existence of additional genes associated with this condition but also allows speculation that a significant number of cases presenting with hyperCKemia or muscle symptoms are due to extrinsic, not genetic, factors.


Assuntos
Doenças Musculares , Doenças Neuromusculares , Rabdomiólise , Adulto , Criança , Humanos , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Neuromusculares/genética , Mialgia/complicações , Mialgia/genética , Rabdomiólise/genética , Rabdomiólise/complicações , Músculos , Fosfatidato Fosfatase
11.
Eur J Hum Genet ; 31(12): 1414-1420, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37468577

RESUMO

Pathogenic variants impacting upon assembly of mitochondrial respiratory chain Complex IV (Cytochrome c Oxidase or COX) predominantly result in early onset mitochondrial disorders often leading to CNS, skeletal and cardiac muscle manifestations. The aim of this study is to describe a molecular defect in the COX assembly factor gene COX18 as the likely cause of a neonatal form of mitochondrial encephalo-cardio-myopathy and axonal sensory neuropathy. The proband is a 19-months old female displaying hypertrophic cardiomyopathy at birth and myopathy with axonal sensory neuropathy and failure to thrive developing in the first months of life. Serum lactate was consistently increased. Whole exome sequencing allowed the prioritization of the unreported homozygous substitution NM_001297732.2:c.667 G > C p.(Asp223His) in COX18. Patient's muscle biopsy revealed severe and diffuse COX deficiency and striking mitochondrial abnormalities. Biochemical and enzymatic studies in patient's myoblasts and in HEK293 cells after COX18 silencing showed a severe impairment of both COX activity and assembly. The biochemical defect was partially rescued by delivery of wild-type COX18 cDNA into patient's myoblasts. Our study identifies a novel defect of COX assembly and expands the number of nuclear genes involved in a mitochondrial disorder due to isolated COX deficiency.


Assuntos
Deficiência de Citocromo-c Oxidase , Doenças Musculares , Feminino , Humanos , Lactente , Deficiência de Citocromo-c Oxidase/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células HEK293 , Proteínas Mitocondriais/genética , Mutação
12.
BMC Neurol ; 23(1): 165, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095452

RESUMO

BACKGROUND: Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a systemic disorder in which multi-organ dysfunction may occur from mitochondrial metabolism failure. Maternally inherited mutations in the MT-TL1 gene are the most frequent causes for this disorder. Clinical manifestations may include stroke-like episodes, epilepsy, dementia, headache and myopathy. Among these, acute visual failure, usually in association with cortical blindness, can occur because of stroke-like episodes affecting the occipital cortex or the visual pathways. Vision loss due to optic neuropathy is otherwise considered a typical manifestation of other mitochondrial diseases such as Leber hereditary optic neuropathy (LHON). CASE PRESENTATION: Here we describe a 55-year-old woman, sister of a previously described patient with MELAS harbouring the m.3243A > G (p.0, MT-TL1) mutation, with otherwise unremarkable medical history, that presented with subacute, painful visual impairment of one eye, accompanied by proximal muscular pain and headache. Over the next weeks, she developed severe and progressive vision loss limited to one eye. Ocular examination confirmed unilateral swelling of the optic nerve head; fluorescein angiography showed segmental perfusion delay in the optic disc and papillary leakage. Neuroimaging, blood and CSF examination and temporal artery biopsy ruled out neuroinflammatory disorders and giant cell arteritis (GCA). Mitochondrial sequencing analysis confirmed the m.3243A > G transition, and excluded the three most common LHON mutations, as well as the m.3376G > A LHON/MELAS overlap syndrome mutation. Based on the constellation of clinical symptoms and signs presented in our patient, including the muscular involvement, and the results of the investigations, the diagnosis of optic neuropathy as a stroke-like event affecting the optic disc was performed. L-arginine and ubidecarenone therapies were started with the aim to improve stroke-like episode symptoms and prevention. The visual defect remained stable with no further progression or outbreak of new symptoms. CONCLUSIONS: Atypical clinical presentations must be always considered in mitochondrial disorders, even in well-described phenotypes and when mutational load in peripheral tissue is low. Mitotic segregation of mitochondrial DNA (mtDNA) does not allow to know the exact degree of heteroplasmy existent within different tissue, such as retina and optic nerve. Important therapeutic implications arise from a correct diagnosis of atypical presentation of mitochondrial disorders.


Assuntos
Acidose Láctica , Síndrome MELAS , Atrofia Óptica Hereditária de Leber , Doenças do Nervo Óptico , Neuropatia Óptica Isquêmica , Acidente Vascular Cerebral , Feminino , Humanos , Síndrome MELAS/genética , Neuropatia Óptica Isquêmica/complicações , Mutação , Acidente Vascular Cerebral/complicações , Doenças do Nervo Óptico/complicações , Atrofia Óptica Hereditária de Leber/genética , DNA Mitocondrial/genética , Transtornos da Visão/complicações , Cefaleia/complicações
13.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982625

RESUMO

Collagen VI is a heterotrimeric protein expressed in several tissues and involved in the maintenance of cell integrity. It localizes at the cell surface, creating a microfilamentous network that links the cytoskeleton to the extracellular matrix. The heterotrimer consists of three chains encoded by COL6A1, COL6A2 and COL6A3 genes. Recessive and dominant molecular defects cause two main disorders, the severe Ullrich congenital muscular dystrophy and the relatively mild and slowly progressive Bethlem myopathy. We analyzed the clinical aspects, pathological features and mutational spectrum of 15 COL6-mutated patients belonging to our cohort of muscular dystrophy probands. Patients presented a heterogeneous phenotype ranging from severe forms to mild adult-onset presentations. Molecular analysis by NGS detected 14 different pathogenic variants, three of them so far unreported. Two changes, localized in the triple-helical domain of COL6A1, were associated with a more severe phenotype. Histological, immunological and ultrastructural techniques were employed for the validation of the genetic variants; they documented the high variability in COL6 distribution and the extracellular matrix disorganization, highlighting the clinical heterogeneity of our cohort. The combined use of these different technologies is pivotal in the diagnosis of COL6 patients.


Assuntos
Doenças Musculares , Distrofias Musculares , Humanos , Doenças Musculares/genética , Distrofias Musculares/metabolismo , Mutação , Matriz Extracelular/metabolismo , Fenótipo , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo
14.
Front Neurol ; 14: 1095121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793492

RESUMO

Objective: No treatments are approved for Becker muscular dystrophy (BMD). This study investigated the efficacy and safety of givinostat, a histone deacetylase pan-inhibitor, in adults with BMD. Methods: Males aged 18-65 years with a diagnosis of BMD confirmed by genetic testing were randomized 2:1 to 12 months treatment with givinostat or placebo. The primary objective was to demonstrate statistical superiority of givinostat over placebo for mean change from baseline in total fibrosis after 12 months. Secondary efficacy endpoints included other histological parameters, magnetic resonance imaging and spectroscopy (MRI and MRS) measures, and functional evaluations. Results: Of 51 patients enrolled, 44 completed treatment. At baseline, there was greater disease involvement in the placebo group than givinostat, based on total fibrosis (mean 30.8 vs. 22.8%) and functional endpoints. Mean total fibrosis did not change from baseline in either group, and the two groups did not differ at Month 12 (least squares mean [LSM] difference 1.04%; p = 0.8282). Secondary histology parameters, MRS, and functional evaluations were consistent with the primary. MRI fat fraction in whole thigh and quadriceps did not change from baseline in the givinostat group, but values increased with placebo, with LSM givinostat-placebo differences at Month 12 of -1.35% (p = 0.0149) and -1.96% (p = 0.0022), respectively. Adverse events, most mild or moderate, were reported by 88.2% and 52.9% patients receiving givinostat and placebo. Conclusion: The study failed to achieve the primary endpoint. However, there was a potential signal from the MRI assessments suggesting givinostat could prevent (or slow down) BMD disease progression.

15.
Genes (Basel) ; 14(2)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36833224

RESUMO

Thanks to advances in gene sequencing, RYR1-related myopathy (RYR1-RM) is now known to manifest itself in vastly heterogeneous forms, whose clinical interpretation is, therefore, highly challenging. We set out to develop a novel unsupervised cluster analysis method in a large patient population. The objective was to analyze the main RYR1-related characteristics to identify distinctive features of RYR1-RM and, thus, offer more precise genotype-phenotype correlations in a group of potentially life-threatening disorders. We studied 600 patients presenting with a suspicion of inherited myopathy, who were investigated using next-generation sequencing. Among them, 73 index cases harbored variants in RYR1. In an attempt to group genetic variants and fully exploit information derived from genetic, morphological, and clinical datasets, we performed unsupervised cluster analysis in 64 probands carrying monoallelic variants. Most of the 73 patients with positive molecular diagnoses were clinically asymptomatic or pauci-symptomatic. Multimodal integration of clinical and histological data, performed using a non-metric multi-dimensional scaling analysis with k-means clustering, grouped the 64 patients into 4 clusters with distinctive patterns of clinical and morphological findings. In addressing the need for more specific genotype-phenotype correlations, we found clustering to overcome the limits of the "single-dimension" paradigm traditionally used to describe genotype-phenotype relationships.


Assuntos
Doenças Musculares , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Doenças Musculares/genética , Estudos de Associação Genética , Genótipo , Fenótipo
16.
Front Neurol ; 14: 1281953, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304327

RESUMO

Limb-girdle muscular dystrophy autosomal recessive 8 (LGMDR8) is a rare clinical manifestation caused by the presence of biallelic variants in the TRIM32 gene. We present the clinical, molecular, histopathological, and muscle magnetic resonance findings of a novel 63-years-old LGMDR8 patient of Italian origins, who went undiagnosed for 24 years. Clinical exome sequencing identified two TRIM32 missense variants, c.1181G > A p.(Arg394His) and c.1781G > A p.(Ser594Asp), located in the NHL1 and NHL4 structural domains, respectively, of the TRIM32 protein. We conducted a literature review of the clinical and instrumental data associated to the so far known 26 TRIM32 variants, carried biallelically by 53 LGMDR8 patients reported to date in 20 papers. Our proband's variants were previously identified only in three independent LGMDR8 patients in homozygosis, therefore our case is the first in literature to be described as compound heterozygous for such variants. Our report also provides additional data in support of their pathogenicity, since p.(Arg394His) is currently classified as a variant of uncertain significance, while p.(Ser594Asp) as likely pathogenic. Taken together, these findings might be useful to improve both the genetic counseling and the diagnostic accuracy of this rare neuromuscular condition.

17.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498898

RESUMO

OBJECTIVE: To define the prevalence of variants in collagen VI genes through a next-generation sequencing (NGS) approach in undiagnosed patients with suspected neuromuscular disease and to propose a diagnostic flowchart to assess the real pathogenicity of those variants. METHODS: In the past five years, we have collected clinical and molecular information on 512 patients with neuromuscular symptoms referred to our center. To pinpoint variants in COLVI genes and corroborate their real pathogenicity, we sketched a multistep flowchart, taking into consideration the bioinformatic weight of the gene variants, their correlation with clinical manifestations and possible effects on protein stability and expression. RESULTS: In Step I, we identified variants in COLVI-related genes in 48 patients, of which three were homozygous variants (Group 1). Then, we sorted variants according to their CADD score, clinical data and complementary studies (such as muscle and skin biopsy, study of expression of COLVI on fibroblast or muscle and muscle magnetic resonance). We finally assessed how potentially pathogenic variants (two biallelic and 12 monoallelic) destabilize COL6A1-A2-A3 subunits. Overall, 15 out of 512 patients were prioritized according to this pipeline. In seven of them, we confirmed reduced or absent immunocytochemical expression of collagen VI in cultured skin fibroblasts or in muscle tissue. CONCLUSIONS: In a real-world diagnostic scenario applied to heterogeneous neuromuscular conditions, a multistep integration of clinical and molecular data allowed the identification of about 3% of those patients harboring pathogenetic collagen VI variants.


Assuntos
Colágeno Tipo VI , Doenças Neuromusculares , Humanos , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Doenças Neuromusculares/epidemiologia , Doenças Neuromusculares/genética , Homozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Músculos/metabolismo , Mutação
18.
Skelet Muscle ; 12(1): 23, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175989

RESUMO

BACKGROUND: Choline kinase beta (CHKB) catalyzes the first step in the de novo biosynthesis of phosphatidyl choline and phosphatidylethanolamine via the Kennedy pathway. Derangement of this pathway might also influence the homeostasis of mitochondrial membranes. Autosomal recessive CHKB mutations cause a rare form of congenital muscular dystrophy known as megaconial congenital muscular dystrophy (MCMD). CASE PRESENTATION: We describe a novel proband presenting MCMD due to unpublished CHKB mutations. The patient is a 6-year-old boy who came to our attention for cognitive impairment and slowly progressive muscular weakness. He was the first son of non-consanguineous healthy parents from Sri Lanka. Neurological examination showed proximal weakness at four limbs, weak osteotendinous reflexes, Gowers' maneuver, and waddling gate. Creatine kinase levels were mildly increased. EMG and brain MRI were normal. Left quadriceps skeletal muscle biopsy showed a myopathic pattern with nuclear centralizations and connective tissue increase. Histological and histochemical staining suggested subsarcolemmal localization and dimensional increase of mitochondria. Ultrastructural analysis confirmed the presence of enlarged ("megaconial") mitochondria. Direct sequencing of CHKB identified two novel defects: the c.1060G > C (p.Gly354Arg) substitution and the c.448-56_29del intronic deletion, segregating from father and mother, respectively. Subcloning of RT-PCR amplicons from patient's muscle RNA showed that c.448-56_29del results in the partial retention (14 nucleotides) of intron 3, altering physiological splicing and transcript stability. Biochemical studies showed reduced levels of the mitochondrial fission factor DRP1 and the severe impairment of mitochondrial respiratory chain activity in patient's muscle compared to controls. CONCLUSIONS: This report expands the molecular findings associated with MCMD and confirms the importance of considering CHKB variants in the differential diagnosis of patients presenting with muscular dystrophy and mental retardation. The clinical outcome of MCMD patients seems to be influenced by CHKB molecular defects. Histological and ultrastructural examination of muscle biopsy directed molecular studies and allowed the identification and characterization of an intronic mutation, usually escaping standard molecular testing.


Assuntos
Colina Quinase , Distrofias Musculares , Criança , Colina Quinase/genética , Colina Quinase/metabolismo , Creatina Quinase , Humanos , Masculino , Músculo Esquelético/metabolismo , Distrofias Musculares/congênito , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Mutação , Nucleotídeos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , RNA/metabolismo
19.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077211

RESUMO

Limb-girdle muscular dystrophies (LGMD) are clinically and genetically heterogenous presentations displaying predominantly proximal muscle weakness due to the loss of skeletal muscle fibers. Beta-sarcoglycanopathy (LGMDR4) results from biallelic molecular defects in SGCB and features pediatric onset with limb-girdle involvement, often complicated by respiratory and heart dysfunction. Here we describe a patient who presented at the age of 12 years reporting high creatine kinase levels and onset of cramps after strenuous exercise. Instrumental investigations, including a muscle biopsy, pointed towards a diagnosis of beta-sarcoglycanopathy. NGS panel sequencing identified two variants in the SGCB gene, one of which (c.243+1548T>C) was found to promote the inclusion of a pseudoexon between exons 2 and 3 in the SGCB transcript. Interestingly, we detected the same genotype in a previously reported LGMDR4 patient, deceased more than twenty years ago, who had escaped molecular diagnosis so far. After the delivery of morpholino oligomers targeting the pseudoexon in patient-specific induced pluripotent stem cells, we observed the correction of the physiological splicing and partial restoration of protein levels. Our findings prompt the analysis of the c.243+1548T>C variant in suspected LGMDR4 patients, especially those harbouring monoallelic SGCB variants, and provide a further example of the efficacy of antisense technology for the correction of molecular defects resulting in splicing abnormalities.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Sarcoglicanopatias , Criança , Humanos , Morfolinos/genética , Morfolinos/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Mutação , Sarcoglicanopatias/metabolismo
20.
Eur J Histochem ; 66(3)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36047345

RESUMO

Sarcoglycanopathies are highly heterogeneous in terms of disease progression, muscular weakness, loss of ambulation and cardiac/respiratory involvement. Their clinical severity usually correlates with the residual protein amount, which makes protein quantification extremely relevant. Sarcoglycanopathy diagnosis is genetic, but skeletal muscle analysis - by both immunohistochemistry and Western blot (WB) - is still mandatory to establish the correct diagnostic process. Unfortunately, however, WB analysis cannot be performed if the bioptic specimen is scarce. This study provides a sensitive tool for semi-quantification of residual amount of sarcoglycans in patients affected by sarcoglycanopathies, based on immunofluorescence staining on skeletal muscle sections, image acquisition and software elaboration. We applied this method to eleven sarcoglycanopathies, seven Becker muscular dystrophies and four age-matched controls. Fluorescence data analysed in patients and compared to age-matched controls showed a significant reduction of the mutated sarcoglycan expression and a variable reduction of the other sarcoglycans. Fluorescence normalized data analysed in relation to the age of onset of the disease, showed a negative correlation of α-sarcoglycan fluorescent signal versus fibrosis in patients with an early age of onset and a negative correlation between δ-sarcoglycan signal and fibrosis in both intermediate and late age of onset groups. The availability of a method that allows objective quantification of the sarcolemmal proteins, faster and less consuming than WB analysis and able to detect low residual sarcoglycan expression with great sensitivity, proves useful to better define both patient prognosis and expected disease evolution. The proposed method could be employed also to monitor the efficacy of therapeutic interventions and during clinical trials.


Assuntos
Sarcoglicanopatias , Sarcoglicanas , Biópsia , Fibrose , Imunofluorescência , Humanos , Músculo Esquelético/metabolismo , Sarcoglicanopatias/diagnóstico , Sarcoglicanopatias/metabolismo , Sarcoglicanopatias/patologia , Sarcoglicanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...